
JIT and Run

Drill Into .NET Framework
Internals to See How the CLR
Creates Runtime Objects
Hanu Kommalapati and Tom Christian

This article discusses:
 SystemDomain, SharedDomain, and

DefaultDomain
 Object layout and other memory

specifics
 Method table layout
 Method dispatching

This article uses the following
technologies:
.NET Framework, C#

Contents

Domains Created by the CLR Bootstrap
System Domain
SharedDomain
DefaultDomain
LoaderHeaps
Type Fundamentals
ObjectInstance
MethodTable
Base Instance Size
Method Slot Table
MethodDesc
Interface Vtable Map and Interface Map
Virtual Dispatch
Static Variables
EEClass
Conclusion

Since the common language runtime (CLR) will be the premiere infrastructure for
building applications in Windows® for some time to come, gaining a deep
understanding of it will help you build efficient, industrial-strength applications.
In this article, we'll explore CLR internals, including object instance layout,
method table layout, method dispatching, interface-based dispatching, and
various data structures.

https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S1
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S2
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S3
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S4
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S5
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S6
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S7
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S8
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S9
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S10
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S11
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S12
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S13
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S14
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S15
https://web.archive.org/web/20150515023057/https:/msdn.microsoft.com/en-us/magazine/cc163791.aspx#S16

We'll be using very simple code samples written in C#, so any implicit references
to language syntax should default to C#. Some of the data structures and
algorithms discussed will change for the Microsoft® .NET Framework 2.0, but the
concepts should largely remain the same. We'll use the Visual Studio® .NET 2003
Debugger and the debugger extension Son of Strike (SOS) to peek into the data
structures we discuss in this article. SOS understands CLR internal data
structures and dumps out useful information. See the "Son of Strike" sidebar for
loading SOS.dll into the Visual Studio .NET 2003 debugger process. Throughout
the article, we will describe classes that have corresponding implementations in
the Shared Source CLI (SSCLI). Figure 1will help you navigate the megabytes of
code in the SSCLI while searching for the referenced structures.

Item SSCLI Path

AppDomain \sscli\clr\src\vm\appdomain.hpp

AppDomainStringLiter
alMap

\sscli\clr\src\vm\stringliteralmap.h

BaseDomain \sscli\clr\src\vm\appdomain.hpp

ClassLoader \sscli\clr\src\vm\clsload.hpp

EEClass \sscli\clr\src\vm\class.h

FieldDescs \sscli\clr\src\vm\field.h

GCHeap \sscli\clr\src\vm\gc.h

GlobalStringLiteralMa
p

\sscli\clr\src\vm\stringliteralmap.h

HandleTable \sscli\clr\src\vm\handletable.h

InterfaceVTableMapM
gr

\sscli\clr\src\vm\appdomain.hpp

Large Object Heap \sscli\clr\src\vm\gc.h

LayoutKind \sscli\clr\src\bcl\system\runtime\interopservices\l
ayoutkind.cs

LoaderHeaps \sscli\clr\src\inc\utilcode.h

MethodDescs \sscli\clr\src\vm\method.hpp

MethodTables \sscli\clr\src\vm\class.h

OBJECTREF \sscli\clr\src\vm\typehandle.h

SecurityContext \sscli\clr\src\vm\security.h

SecurityDescriptor \sscli\clr\src\vm\security.h

SharedDomain \sscli\clr\src\vm\appdomain.hpp

Figure 1 SSCLI Reference

A word of caution before we start—the information provided in this article is only
valid for the .NET Framework 1.1 (it's also mostly true for Shared Source CLI 1.0,
with the most notable exceptions being some interop scenarios) when running on
the x86 platform. This information will change for the .NET Framework 2.0, so
please do not build software that relies on the constancy of these internal
structures.

Domains Created by the CLR Bootstrap

Before the CLR executes the first line of the managed code, it creates three
application domains. Two of these are opaque from within the managed code
and are not even visible to CLR hosts. They can only be created through the CLR
bootstrapping process facilitated by the shim—mscoree.dll and mscorwks.dll (or
mscorsvr.dll for multiprocessor systems). As you can see in Figure 2, these are
the System Domain and the Shared Domain, which are singletons. The third
domain is the Default AppDomain, an instance of the AppDomain class that is the
only named domain. For simple CLR hosts such as a console program, the default
domain name is composed of the executable image name. Additional domains
can be created from within managed code using the AppDomain.CreateDomain
method or from unmanaged hosting code using the ICORRuntimeHost interface.
Complicated hosts like ASP.NET create multiple domains based on the number of
applications in a given Web site.

StructLayoutAttribute \sscli\clr\src\bcl\system\runtime\interopservices\
attributes.cs

SyncTableEntry \sscli\clr\src\vm\syncblk.h

System namespace \sscli\clr\src\bcl\system

SystemDomain \sscli\clr\src\vm\appdomain.hpp

TypeHandle \sscli\clr\src\vm\typehandle.h

Figure 2 Domains Created by the CLR Bootstrap

System Domain

The SystemDomain is responsible for creating and initializing the SharedDomain
and the default AppDomain. It loads the system library mscorlib.dll into
SharedDomain. It also keeps process-wide string literals interned implicitly or
explicitly.
String interning is an optimization feature that's a little bit heavy-handed in the
.NET Framework 1.1, as the CLR does not give assemblies the opportunity to opt
out of the feature. Nonetheless, it saves memory by having only a single instance
of the string for a given literal across all the application domains.
SystemDomain is also responsible for generating process-wide interface IDs,
which are used in creating InterfaceVtableMaps in each AppDomain.
SystemDomain keeps track of all the domains in the process and implements
functionality for loading and unloading the AppDomains.

SharedDomain

All of the domain-neutral code is loaded into SharedDomain. Mscorlib, the system
library, is needed by the user code in all the AppDomains. It is automatically
loaded into SharedDomain. Fundamental types from the System namespace like
Object, ValueType, Array, Enum, String, and Delegate get preloaded into this
domain during the CLR bootstrapping process. User code can also be loaded into

this domain, using LoaderOptimization attributes specified by the CLR hosting
app while calling CorBindToRuntimeEx. Console programs can load code into
SharedDomain by annotating the app's Main method with a
System.LoaderOptimizationAttribute. SharedDomain also manages an assembly
map indexed by the base address, which acts as a lookup table for managing
shared dependencies of assemblies being loaded into DefaultDomain and of
other AppDomains created in managed code. DefaultDomain is where non-
shared user code is loaded.

DefaultDomain

DefaultDomain is an instance of AppDomain within which application code is
typically executed. While some applications require additional AppDomains to be
created at runtime (such as apps that have plug-in architectures or apps doing a
significant amount of run-time code generation), most applications create one
domain during their lifetime. All code that executes in this domain is context-
bound at the domain level. If an application has multiple AppDomains, any cross-
domain access will occur through .NET Remoting proxies. Additional intra-domain
context boundaries can be created using types inherited from
System.ContextBoundObject. Each AppDomain has its own SecurityDescriptor,
SecurityContext, and DefaultContext, as well as its own loader heaps (High-
Frequency Heap, Low-Frequency Heap, and Stub Heap), Handle Tables (Handle
Table, Large Object Heap Handle Table), Interface Vtable Map Manager, and
Assembly Cache.

LoaderHeaps

LoaderHeaps are meant for loading various runtime CLR artifacts and
optimization artifacts that live for the lifetime of the domain. These heaps grow
by predictable chunks to minimize fragmentation. LoaderHeaps are different from
the garbage collector (GC) Heap (or multiple heaps in case of a symmetric
multiprocessor or SMP) in that the GC Heap hosts object instances while
LoaderHeaps hold together the type system. Frequently accessed artifacts like
MethodTables, MethodDescs, FieldDescs, and Interface Maps get allocated on a
HighFrequencyHeap, while less frequently accessed data structures, such as
EEClass and ClassLoader and its lookup tables, get allocated on a
LowFrequencyHeap. The StubHeap hosts stubs that facilitate code access
security (CAS), COM wrapper calls, and P/Invoke.
Having examined the domains and LoaderHeaps at a high level, we'll now look at
the physical details of these in the context of the simple app in Figure 3. We
stopped the program execution at "mc.Method1();" and dumped the domain
information using the SOS debugger extension command, DumpDomain (see the
"Son of Strike" sidebar for SOS loading information). Here is the edited output:

!DumpDomain System Domain: 793e9d58, LowFrequencyHeap: 793e9dbc,
HighFrequencyHeap: 793e9e14, StubHeap: 793e9e6c, Assembly: 0015aa68
[mscorlib], ClassLoader: 0015ab40 Shared Domain: 793eb278, LowFrequencyHeap:
793eb2dc, HighFrequencyHeap: 793eb334, StubHeap: 793eb38c, Assembly:
0015aa68 [mscorlib], ClassLoader: 0015ab40 Domain 1: 149100,
LowFrequencyHeap: 00149164, HighFrequencyHeap: 001491bc, StubHeap:
00149214, Name: Sample1.exe, Assembly: 00164938 [Sample1], ClassLoader:
00164a78

Figure 3 Sample1.exe

using System; public interface MyInterface1 { void Method1(); void Method2(); }
public interface MyInterface2 { void Method2(); void Method3(); } class MyClass :
MyInterface1, MyInterface2 { public static string str = "MyString"; public static uint
ui = 0xAAAAAAAA; public void Method1() { Console.WriteLine("Method1"); } public
void Method2() { Console.WriteLine("Method2"); } public virtual void Method3() {
Console.WriteLine("Method3"); } } class Program { static void Main() { MyClass mc
= new MyClass(); MyInterface1 mi1 = mc; MyInterface2 mi2 = mc; int i =
MyClass.str.Length; uint j = MyClass.ui; mc.Method1(); mi1.Method1();
mi1.Method2(); mi2.Method2(); mi2.Method3(); mc.Method3(); } }

Our console program, Sample1.exe, is loaded into an AppDomain which has a
name "Sample1.exe." Mscorlib.dll is loaded into the SharedDomain but it is also
listed against the SystemDomain as it is the core system library. A
HighFrequencyHeap, LowFrequencyHeap, and StubHeap are allocated in each
domain. The SystemDomain and the SharedDomain use the same ClassLoader,
while the Default AppDomain uses its own.
The output does not show the reserved and committed sizes of the loader heaps.
The HighFrequencyHeap initial reserve size is 32KB and its commit size is 4KB.
LowFrequencyHeap and StubHeaps are initially reserved with 8KB and committed
at 4KB. Also not shown in the SOS output is the InterfaceVtableMap heap. Each
domain has a InterfaceVtableMap (referred to here as IVMap) that is created on
its own LoaderHeap during the domain initialization phase. The IVMap heap is
reserved at 4KB and is committed at 4KB initially. We'll discuss the significance of
IVMap while exploring type layout in subsequent sections.
Figure 2 shows the default Process Heap, JIT Code Heap, GC Heap (for small
objects) and Large Object Heap (for objects with size 85000 or more bytes) to
illustrate the semantic difference between these and the loader heaps. The just-
in-time (JIT) compiler generates x86 instructions and stores them on the JIT
Code Heap. GC Heap and Large Object are the garbage-collected heaps on which
managed objects are instantiated.

Type Fundamentals

A type is the fundamental unit of programming in .NET. In C#, a type can be
declared using the class, struct, and interface keywords. Most types are explicitly
created by the programmer, however, in special interoperability cases and
remote object invocation (.NET Remoting) scenarios, the .NET CLR implicitly
generates types. These generated types include COM and Runtime Callable
Wrappers and Transparent Proxies.
We'll explore .NET type fundamentals by starting from a stack frame that
contains an object reference (typically, the stack is one of the locations from
which an object instance begins life). The code shown in Figure 4 contains a
simple program with a console entry point that calls a static method. Method1
creates an instance of type SmallClass which contains a byte array used in
demonstrating the creation of an object instance on a Large Object Heap. The
code is trivial, but will serve for our discussion.

Figure 4 Large Objects and Small Objects

using System; class SmallClass { private byte[] _largeObj; public SmallClass(int size)
{ _largeObj = new byte[size]; _largeObj[0] = 0xAA; _largeObj[1] = 0xBB;
_largeObj[2] = 0xCC; } public byte[] LargeObj { get { return this._largeObj; } } }
class SimpleProgram { static void Main(string[] args) { SmallClass smallObj =
SimpleProgram.Create(84930,10,15,20,25); return; } static SmallClass Create(int
size1, int size2, int size3, int size4, int size5) { int objSize = size1 + size2 + size3 +
size4 + size5; SmallClass smallObj = new SmallClass(objSize); return smallObj; } }

Figure 5 shows snapshot of a typical fastcall stack frame stopped at a
breakpoint at the "return smallObj;" line inside the Create method. (Fastcall is
the .NET calling convention which specifies that arguments to functions are to be
passed in registers, when possible, with all other arguments passed on the stack
right to left and popped later by the called function.) The value type local
variable objSize is inlined within the stack frame. Reference type variables like
smallObj are stored as a fixed size (a 4-byte DWORD) on the stack and contain
the address of object instances allocated on the normal GC Heap. In traditional
C++, this is an object pointer; in the managed world it's an object reference.
Nonetheless, it contains the address of an object instance. We'll use the term
ObjectInstance for the data structure located at the address pointed to by the
object reference.

Figure 5 SimpleProgram Stack Frame and Heaps

The smallObj object instance on the normal GC Heap contains a Byte[] called
_largeObj, whose size is 85000 bytes (note that the figure shows 85016 bytes,
which is the actual storage size). The CLR treats objects with sizes greater than
or equal to 85000 bytes differently than the smaller objects. Large objects are
allocated on a Large Object Heap (LOH), while smaller objects are created on a

normal GC Heap, which optimizes the object allocation and garbage collection.
The LOH is not compacted, whereas the GC Heap is compacted whenever a GC
collection occurs. Moreover, the LOH is only collected on full GC collections.
The ObjectInstance of smallObj contains the TypeHandle that points to the
MethodTable of the corresponding type. There will be one MethodTable for each
declared type and all the object instances of the same type will point to the same
MethodTable. This will contain information about the kind of type (interface,
abstract class, concrete class, COM Wrapper, and proxy), the number of
interfaces implemented, the interface map for method dispatch, the number of
slots in the method table, and a table of slots that point to the implementations.
One important data structure MethodTable points to is EEClass. The CLR class
loader creates EEClass from the metadata before MethodTable is laid out.
In Figure 4, SmallClass's MethodTable points to its EEClass. These structures
point to their modules and assemblies. MethodTable and EEClass are typically
allocated on the domain-specific loader heaps. Byte[] is a special case; the
MethodTable and the EEClass are allocated on the loader heaps of the
SharedDomain. Loader heaps are AppDomain-specific and any data structures
already mentioned here, once loaded, will not go away until an AppDomain is
unloaded. Also, the default AppDomain can't be unloaded and hence the code
lives until the CLR is shut down.

ObjectInstance

As we mentioned, all instances of value types are either inlined on the thread
stack or inlined on the GC Heap. All reference types are created on the GC Heap
or LOH. Figure 6 shows a typical object instance layout. An object can be
referenced from stack-based local variables, handle tables in the interop or
P/Invoke scenarios, from registers (the this pointer and method arguments while
executing a method), or from the finalizer queue for objects having finalizer
methods. The OBJECTREF does not point to the beginning of the Object Instance
but at a DWORD offset (4 bytes). The DWORD is called Object Header and holds
an index (a 1-based syncblk number) into a SyncTableEntry table. As the
chaining is through an index, the CLR can move the table around in memory
while increasing the size as needed. The SyncTableEntry maintains a weak
reference back to the object so that the SyncBlock ownership can be tracked by
the CLR. Weak references enable the GC to collect the object when no other
strong references exist. SyncTableEntry also stores a pointer to SyncBlock that
contains useful information, but is rarely needed by all instances of an object.
This information includes the object's lock, its hash code, any thunking data, and
its AppDomain index. For most object instances, there will be no storage
allocated for the actual SyncBlock and the syncblk number will be zero. This will
change when the execution thread hits statements like lock(obj) or
obj.GetHashCode, as shown here:

SmallClass obj = new SmallClass() // Do some work here lock(obj) { /* Do some
synchronized work here */ } obj.GetHashCode();

Figure 6 Object Instance Layout

In this code, smallObj will use zero (no syncblk) as its starting syncblk number.
The lock statement causes the CLR to create a syncblk entry and update the
object header with the corresponding number. As the C# lock keyword expands
to a try-finally that makes use of the Monitor class, a Monitor object is created on
the syncblk for synchronization. A call to the GetHashCode method populates the
syncblk with the object hash code.
There are other fields in the SyncBlock that are used in COM interop and for
marshaling delegates to unmanaged code, but which are not relevant for a
typical object usage.
TypeHandle follows the syncblk number in the ObjectInstance. In order to
maintain continuity, I will discuss TypeHandle after elaborating on the instances
variables. A variable list of instance fields follows the TypeHandle. By default, the
instance fields will be packed in such a way that memory is used efficiently and
padding is minimized for alignment. The code in Figure 7 shows a SimpleClass
that has a bunch of instance variables with varying sizes contained in it.

Figure 7 SimpleClass with Instance Variables

class SimpleClass { private byte b1 = 1; // 1 byte private byte b2 = 2; // 1 byte
private byte b3 = 3; // 1 byte private byte b4 = 4; // 1 byte private char c1 = 'A'; //
2 bytes private char c2 = 'B'; // 2 bytes private short s1 = 11; // 2 bytes private
short s2 = 12; // 2 bytes private int i1 = 21; // 4 bytes private long l1 = 31; // 8
bytes private string str = "MyString"; // 4 bytes (only OBJECTREF) //Total instance
variable size = 28 bytes static void Main() { SimpleClass simpleObj = new
SimpleClass(); return; } }

Figure 8 shows an example of a SimpleClass object instance in the Visual Studio
debugger memory window. We set a breakpoint on the return statement
in Figure 7 and used the address of the simpleObj contained in the ECX register
to display object instance in the memory window. The first 4-byte block is the
syncblk number. As we didn't use the instance in any synchronizing code (or
access its HashCode), this is set to 0. The object reference, as stored in the stack
variable, points to 4 bytes starting at offset 4. The Byte variables b1, b2, b3, and
b4 are all packed side by side. Both of the short variables, s1 and s2, are packed
together. The String variable str is a 4-byte OBJECTREF that points to the actual
instance of the string located on the GC Heap. String is a special type in that all
instances containing the same literal will be made to point to the same instance
in a global string table during the assembly loading process. This process is

called string interning and is designed to optimize memory usage. As we
mentioned previously, in the .NET Framework 1.1, an assembly cannot opt out of
this interning process, although future versions of CLR may provide this
capability.

Figure 8 Debugger Memory Window for Object Instance

So the lexical sequence of member variables in the source code is not maintained
in memory by default. In interop scenarios where lexical sequence has to be
carried forward into memory, the StructLayoutAttribute can be used, which takes
a LayoutKind enumeration as the argument. LayoutKind.Sequential will maintain
the lexical sequence for the marshaled data, though in the .NET Framework 1.1 it
will not affect the managed layout (however, in the .NET Framework 2.0, it will).
In interop scenarios where you really need to have extra padding and explicit
control of the field sequence, LayoutKind.Explicit can be combined with
FieldOffset decoration at the field level.
Having looked at the raw memory contents, let's use SOS to look at the object
instance. One useful command is DumpHeap, which allows listing of all the heap
contents and all the instances of a particular type. Instead of relying on the
registers, DumpHeap can show the address of the only instance we created:

!DumpHeap -type SimpleClass Loaded Son of Strike data table version 5 from
"C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\mscorwks.dll" Address MT Size
00a8197c 00955124 36 Last good object: 00a819a0 total 1 objects Statistics: MT
Count TotalSize Class Name 955124 1 36 SimpleClass

The total size of the object is 36 bytes. No matter how large the string is,
instances of SimpleClass contain only DWORD OBJECTREF. SimpleClass's
instance variables only occupy 28 bytes. The remaining 8 bytes are comprised of
the TypeHandle (4 bytes) and the syncblk number (4 bytes). Having found the
address of the instance simpleObj, let's dump the contents of this instance using
the DumpObj command, as shown here:

!DumpObj 0x00a8197c Name: SimpleClass MethodTable 0x00955124 EEClass
0x02ca33b0 Size 36(0x24) bytes FieldDesc*: 00955064 MT Field Offset Type Attr
Value Name 00955124 400000a 4 System.Int64 instance 31 l1 00955124 400000b c
CLASS instance 00a819a0 str << some fields omitted from the display for brevity
>> 00955124 4000003 1e System.Byte instance 3 b3 00955124 4000004 1f
System.Byte instance 4 b4

As noted, the default layout generated for classes by the C# compiler is
LayoutType.Auto (for structs, LayoutType.Sequential is used); hence the class
loader rearranged the instance fields to minimize the padding. We can use
ObjSize to dump the graph that includes the space taken up by the instance, str.
Here's the output:

!ObjSize 0x00a8197c sizeof(00a8197c) = 72 (0x48) bytes (SimpleClass)

Son of Strike

The SOS debugger extension is used to display the contents of CLR data
structures in this article. It's part of the .NET Framework installation and is
located at %windir%\Microsoft.NET\Framework\v1.1.4322. Before you load SOS
into the process, enable managed debugging from the project properties in
Visual Studio .NET. Add the directory in which SOS.dll is located to the PATH
environment variable. To load SOS.dll, while at a breakpoint, open Debug |
Windows | Immediate. In the immediate window, execute .load sos.dll. Use !help
to get a list of debugger commands. For more information on SOS, see the June
2004 Bugslayer column.

If you subtract the size of the SimpleClass instance (36 bytes) from the overall
size of the object graph (72 bytes), you should get the size of the str—that is, 36
bytes. Let's verify this by dumping the str instance. Here's the output:

!DumpObj 0x00a819a0 Name: System.String MethodTable 0x009742d8 EEClass
0x02c4c6c4 Size 36(0x24) bytes

If you add the size of the string instance str (36 bytes) to the size of SimpleClass
instance (36 bytes), you get a total size of 72 bytes, as reported by the ObjSize
command.
Note that ObjSize will not include the memory taken up by the syncblk
infrastructure. Also, in the .NET Framework 1.1, the CLR is not aware of the
memory taken up by any unmanaged resources like GDI objects, COM objects,
file handles, and so on; hence, they will not be reported by this command.
TypeHandle, a pointer to the MethodTable, is located right after the syncblk
number. Before an object instance is created, the CLR looks up the loaded types,
loads the type if not found, obtains the MethodTable address, creates the object
instance, and populates the object instance with the TypeHandle value. The JIT
compiler-generated code uses TypeHandle to locate the MethodTable for method
dispatching. The CLR uses TypeHandle whenever it has to backtrack to the
loaded type through MethodTable.

https://web.archive.org/web/20150515023057/http:/msdn2.microsoft.com/en-us/magazine/cc188721.aspx

MethodTable

Each class and interface, when loaded into an AppDomain, will be represented in
memory by a MethodTable data structure. This is a result of the class-loading
activity before the first instance of the object is ever created. While
ObjectInstance represents the state, MethodTable represents the behavior.
MethodTable binds the object instance to the language compiler-generated
memory-mapped metadata structures through EEClass. The information in the
MethodTable and the data structures hanging off it can be accessed from
managed code through System.Type. A pointer to the MethodTable can be
acquired even in managed code through the Type.RuntimeTypeHandle property.
TypeHandle, which is contained in the ObjectInstance, points to an offset from
the beginning of the MethodTable. This offset is 12 bytes by default and contains
GC information which we will not discuss here.

Figure 9 shows the typical layout of the MethodTable. We'll show some of the
important fields of the TypeHandle, but for a more complete list, look at the
figure. Let's start with the Base Instance Size as it has direct correlation to the
runtime memory profile.

Figure 9 MethodTable Layout

Base Instance Size

The Base Instance Size is the size of the object as computed by the class loader,
based on the field declarations in the code. As discussed previously, the current
GC implementation needs an object instance of at least 12 bytes. If a class does
not have any instance fields defined, it will carry an overhead of 4 bytes. The rest
of the 8 bytes will be taken up by the Object Header (which may contain a
syncblk number) and TypeHandle. Again, the size of the object can be influenced
by a StructLayoutAttribute.
Look at the memory snapshot (Visual Studio .NET 2003 memory window) of a
MethodTable for MyClass from Figure 3 (MyClass with two interfaces) and
compare it with SOS-generated output. In Figure 9, the object size is located at

a 4-byte offset and the value is 12 (0x0000000C) bytes. The following is the
output of DumpHeap from SOS:

!DumpHeap -type MyClass Address MT Size 00a819ac 009552a0 12 total 1 objects
Statistics: MT Count TotalSize Class Name 9552a0 1 12 MyClass

Method Slot Table

Embedded within the MethodTable is a table of slots that point to the respective
method descriptors (MethodDesc), enabling the behavior of the type. The
Method Slot Table is created based on the linearized list of implementation
methods laid out in the following order: Inherited virtuals, Introduced virtuals,
Instance Methods, and Static Methods.
The ClassLoader walks through the metadata of the current class, parent class,
and interfaces, and creates the method table. In the layout process, it replaces
any overridden virtual methods, replaces any parent class methods being hidden,
creates new slots, and duplicates slots as necessary. The duplication of slots is
necessary to create an illusion that each interface has its own mini vtable.
However, the duplicated slots point to the same physical implementation.
MyClass has three instance methods, a class constructor (.cctor), and an object
constructor (.ctor). The object constructor is automatically generated by the C#
compiler for all objects having no constructors explicitly defined. Class
constructor is generated by the compiler as we have a static variable defined and
initialized. Figure 10 shows the layout of the method table for MyClass. The
layout shows 10 methods because of the duplication of Method2 slot for IVMap,
which will be covered next. Figure 11 shows the edited SOS dump of MyClass's
method table.

Figure 10 MyClass MethodTable Layout

Figure 11 SOS Dump of MyClass Method Table

!DumpMT -MD 0x9552a0 Entry MethodDesc Return Type Name 0097203b 00972040
String System.Object.ToString() 009720fb 00972100 Boolean

System.Object.Equals(Object) 00972113 00972118 I4 System.Object.GetHashCode()
0097207b 00972080 Void System.Object.Finalize() 00955253 00955258 Void
MyClass.Method1() 00955263 00955268 Void MyClass.Method2() 00955263
00955268 Void MyClass.Method2() 00955273 00955278 Void MyClass.Method3()
00955283 00955288 Void MyClass..cctor() 00955293 00955298 Void MyClass..ctor()

The first four methods of any type will always be ToString, Equals, GetHashCode,
and Finalize. These are virtual methods inherited from System.Object. The
Method2 slot is duplicated, but both point to the same method descriptor. The
explicitly coded .cctor and .ctor will be grouped with static methods and instance
methods, respectively.

MethodDesc

Method Descriptor (MethodDesc) is an encapsulation of method implementation
as the CLR knows it. There are several types of Method Descriptors that facilitate
the calls to a variety of interop implementations, in addition to managed
implementations. In this article we will only look at the managed MethodDesc in
the context of the code shown in Figure 3. A MethodDesc is generated as a part
of the class loading process and initially points to Intermediate Language (IL).
Each MethodDesc is padded with a PreJitStub, which is responsible for triggering
JIT compilation. Figure 12 shows a typical layout. The method table slot entry
actually points to the stub instead of the actual MethodDesc data structure. This
is at a negative offset of 5 bytes from the actual MethodDesc and is part of the
8-byte padding every method inherits. The 5 bytes contain instructions for a call
to the PreJitStub routine. This 5-byte offset can be seen from the DumpMT
output (of MyClass in Figure 11) of SOS, as MethodDesc is always 5 bytes after
the location pointed to by the Method Slot Table entry. Upon the first invocation,
a call to the JIT compilation routine is made. After the compilation is complete,
the 5 bytes containing the call instruction will be overwritten with an
unconditional jump to the JIT-compiled x86 code.

Figure 12 Method Descriptor

Disassembly of the code pointed to by the Method Table Slot entry in Figure
12 will show the call to the PreJitStub. Here's an abridged display of the
disassembly before JIT for Method 2:

!u 0x00955263 Unmanaged code 00955263 call 003C3538 ;call to the jitted
Method2() 00955268 add eax,68040000h ;ignore this and the rest ;as !u thinks it as
code

Now let's execute the method and disassemble the same address:

!u 0x00955263 Unmanaged code 00955263 jmp 02C633E8 ;call to the jitted
Method2() 00955268 add eax,0E8040000h ;ignore this and the rest ;as !u thinks it
as code

Only the first 5 bytes at the address is code; the rest contains data of Method2's
MethodDesc. The "!u" command is unaware of this and generates gibberish, so
you can ignore anything after the first 5 bytes.
CodeOrIL before JIT compilation contains the Relative Virtual Address (RVA) of
the method implementation in IL. This field is flagged to indicate that it is IL. The
CLR updates this field with the address of the JITed code after on-demand
compilation. Let's pick a method from the ones listed and dump the MethodDesc
using DumpMT command before and after JIT compilation:

!DumpMD 0x00955268 Method Name : [DEFAULT] [hasThis] Void
MyClass.Method2() MethodTable 9552a0 Module: 164008 mdToken: 06000006 Flags
: 400 IL RVA : 00002068

After compilation, MethodDesc looks like this:

!DumpMD 0x00955268 Method Name : [DEFAULT] [hasThis] Void
MyClass.Method2() MethodTable 9552a0 Module: 164008 mdToken: 06000006 Flags
: 400 Method VA : 02c633e8

The Flags field in the method descriptor is encoded to contain the information
about the type of the method, such as static, instance, interface method, or COM
implementation.
Let's see another complicated aspect of MethodTable: Interface implementation.
It's made to look simple to the managed environment by absorbing all the
complexity into the layout process. Next, we'll show how the interfaces are laid
out and how interface-based method dispatching really works.

Interface Vtable Map and Interface Map

At offset 12 in the MethodTable is an important pointer, the IVMap. As shown
in Figure 9, IVMap points to an AppDomain-level mapping table that is indexed
by a process-level interface ID. The interface ID is generated when the interface
type is first loaded. Each interface implementation will have an entry in IVMap. If
MyInterface1 is implemented by two classes, there will be two entries in the
IVMap table. The entry will point back to the beginning of the sub-table
embedded within the MyClass method table, as shown in Figure 9. This is the
reference with which the interface-based method dispatching occurs. IVMap is
created based on the Interface Map information embedded within the method
table. Interface Map is created based on the metadata of the class during the

MethodTable layout process. Once typeloading is complete, only IVMap is used in
method dispatching.

The Interface Map at offset 28 will point to the InterfaceInfo entries embedded
within the MethodTable. In this case, there are two entries for each of the two
interfaces implemented by MyClass. The first 4 bytes of the first InterfaceInfo
entry points to the TypeHandle of MyInterface1 (see Figure 9 and Figure 10).
The next WORD (2 bytes) is taken up by Flags (where 0 is inherited from parent,
and 1 is implemented in the current class). The WORD right after Flags is Start
Slot, which is used by the class loader to lay out the interface implementation
sub-table. For MyInterface1, the value is 4, which means that slots 5 and 6 point
to the implementation. For MyInterface2, the value is 6, so slots 7 and 8 point to
the implementation. ClassLoader duplicates the slots if necessary to create the
illusion that each interface gets its own implementation while physically mapping
to the same method descriptor. In MyClass, MyInterface1.Method2 and
MyInterface2.Method2 will point to the same implementation.
Interface-based method dispatching occurs through IVMap, while direct method
dispatch occurs through the MethodDesc address stored at the respective slot. As
mentioned earlier, the .NET Framework uses the fastcall calling convention. The
first two arguments are typically passed through ECX and EDX registers, if
possible. This first argument of the instance method is always a this pointer,
which is passed through the ECX register as shown by the "mov ecx, esi"
statement:

mi1.Method1(); mov ecx,edi ;move "this" pointer into ecx mov eax,dword ptr [ecx]
;move "TypeHandle" into eax mov eax,dword ptr [eax+0Ch] ;move IVMap address
into eax at offset 12 mov eax,dword ptr [eax+30h] ;move the ifc impl start slot into
eax call dword ptr [eax] ;call Method1 mc.Method1(); mov ecx,esi ;move "this"
pointer into ecx cmp dword ptr [ecx],ecx ;compare and set flags call dword ptr
ds:[009552D8h];directly call Method1

These disassemblies show that the direct call to MyClass's instance method does
not use offset. The JIT compiler writes the address of the MethodDesc directly
into the code. Interface-based dispatch happens through IVMap and requires a
few extra instructions than the direct dispatch. One is used to fetch the address
of the IVMap, and the other to fetch the start slot of the interface
implementation within the Method SlotTable. Also, casting an object instance to
an interface merely copies the this pointer to the target variable. In Figure 2,
the statement "mi1 = mc;" uses a single instruction to copy the OBJECTREF in
mc to mi1.

Virtual Dispatch

Let's look now at Virtual Dispatch and compare it with direct and interface-based
dispatch. Here is the disassembly for a virtual method call to MyClass.Method3
from Figure 3:

mc.Method3(); Mov ecx,esi ;move "this" pointer into ecx Mov eax,dword ptr [ecx]
;acquire the MethodTable address Call dword ptr [eax+44h] ;dispatch to the method
at offset 0x44

Virtual dispatch always occurs through a fixed slot number, irrespective of the
MethodTable pointer in a given implementation class (type) hierarchy. During the
MethodTable layout, ClassLoader replaces the parent implementation with the
overriding child implementation. As a result, method calls coded against the
parent object get dispatched to the child object's implementation. The
disassembly shows that the dispatch occurs through slot number 8 in the
debugger memory window (as seen in Figure 10) as well as the DumpMT
output.

Static Variables

Static variables are an important constituent part of the MethodTable data
structure. They are allocated as a part of the MethodTable right after the method
table slot array. All the primitive static types are inlined while the static value
objects like structs and reference types are referred through OBJECTREFs
created in the handle tables. OBJECTREF in the MethodTable refers to
OBJECTREF in the AppDomain handle table, which refers to the heap-created
object instance. Once created, OBJECTREF in the handle table will keep the
object instance on the heap alive until the AppDomain is unloaded. In Figure 9,
a static string variable, str, points to OBJECTREF on the handle table, which
points to MyString on the GC Heap.

EEClass

EEClass comes to life before the MethodTable is created and, when combined
with MethodTable, is the CLR version of a type declaration. In fact, EEClass and
MethodTable are logically one data structure (together they represent a single
type), and were split based on frequency of use. Fields that get used a lot are in
MethodTable, while fields that get used infrequently are in EEClass. Thus
information (like names, fields, and offsets) needed to JIT compile functions end
up in EEClass, however info needed at run time (like vtable slots and GC
information) are in MethodTable.

There will be one EEClass for each type loaded into an AppDomain. This includes
interface, class, abstract class, array, and struct. Each EEClass is a node of a tree
tracked by the execution engine. CLR uses this network to navigate through the
EEClass structures for purposes including class loading, MethodTable layout, type
verification, and type casting. The child-parent relationship between EEClasses is
established based on the inheritance hierarchy, whereas parent-child
relationships are established based on the combination of inheritance hierarchy
and class loading sequence. New EEClass nodes get added, node relationships
get patched, and new relationships get established as the execution of the
managed code progresses. There is also a horizontal relationship with sibling
EEClasses in the network. EEClass has three fields to manage the node
relationships between loaded types: ParentClass, SiblingChain, and
ChildrenChain. Refer to Figure 13for the schematics of EEClass in the context of
MyClass from Figure 4.

Figure 13 shows only a few of the fields relevant to this discussion. Because
we've omitted some fields in the layout, we have not really shown the offsets in
this figure. EEClass has a circular reference to MethodTable. EEClass also points
MethodDesc chunks allocated on HighFrequencyHeap of the default AppDomain.
A reference to a list of FieldDesc objects allocated on the process heap provides
field layout information during MethodTable construction. EEClass is allocated on
the LowFrequencyHeap of the AppDomain so that the operating system can
better perform page management of memory, thereby reducing the working set.

Figure 13 EEClass Layout

Other fields shown in Figure 13 are self-explanatory in the context of MyClass
(Figure 3). Let's look now at the real physical memory by dumping the EEClass
using SOS. Run the program from Figure 3 after setting a breakpoint on the
line, mc.Method1. First obtain the address of EEClass for MyClass using the
command Name2EE:

!Name2EE C:\Working\test\ClrInternals\Sample1.exe MyClass MethodTable:
009552a0 EEClass: 02ca3508 Name: MyClass

The first argument to Name2EE is the module name that can be obtained from
DumpDomain command. Now that we have the address of the EEClass, we'll
dump the EEClass itself:

!DumpClass 02ca3508 Class Name : MyClass, mdToken : 02000004, Parent Class :
02c4c3e4 ClassLoader : 00163ad8, Method Table : 009552a0, Vtable Slots : 8 Total
Method Slots : a, NumInstanceFields: 0, NumStaticFields: 2,FieldDesc*: 00955224
MT Field Offset Type Attr Value Name 009552a0 4000001 2c CLASS static 00a8198c
str 009552a0 4000002 30 System.UInt32 static aaaaaaaa ui

Figure 13 and the DumpClass output look essentially the same. Metadata token
(mdToken) represents the MyClass index in the memory mapped metadata tables
of the module PE file, and the Parent class points to System.Object. Sibling Chain
(Figure 13) shows that it is loaded as a result of the loading of the Program
class.
MyClass has eight vtable slots (methods that can be virtually dispatched). Even
though Method1 and Method2 are not virtual, they will be considered virtual
methods when dispatched through interfaces and added to the list. Add .cctor
and .ctor to the list, and you get 10 (0?a) total methods. The class has two static
fields that are listed at the end. MyClass has no instance fields. The rest of the
fields are self-explanatory.

Conclusion
That concludes our tour of the some of the most important internals of the CLR.
Obviously, there's much more to be covered, and in much more depth, but we
hope this has given you a glimpse into how things work. Much of the information
presented here will likely change with subsequent releases of the CLR and the
.NET Framework. But although the CLR data structures covered in this article
may change, the concepts should remain the same.

Hanu Kommalapati is an Architect at Microsoft Gulf Coast District
(Houston). In his current role at Microsoft, he helps enterprise customers in
building scalable component frameworks based on the .NET Framework.
He can be reached at hanuk@microsoft.com.

https://web.archive.org/web/20150515023057/mailto:hanuk@microsoft.com

Tom Christian is an Escalation Engineer with Developer Support at
Microsoft, working with ASP.NET and the .NET debugger extension for
WinDBG (sos/psscor). He is based in Charlotte, NC and can be contacted
at tomchris@microsoft.com.

FROM MSDN Magazine, May 2005 issue.

https://web.archive.org/web/20150515023057/mailto:tomchris@microsoft.com

